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Abstract

Teamwork is best achieved when members of the team understand one another. Human-robot collaboration

poses a particular challenge to this goal due to the differences between individual team members, both

mentally/computationally and physically. One way in which this challenge can be addressed is by developing explicit

models of human teammates. Here, we discuss, compare and contrast the many techniques available for modeling

human cognition and behavior, and evaluate their benefits and drawbacks in the context of human-robot collaboration.
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Introduction

Teamwork is best achieved when members of the

team understand one another (Grosz and Kraus 1999).

Human-robot collaboration poses a unique challenge to

this goal: namely, providing robot teammates with the

ability to recognize and understand what their human

teammates are doing. While this is an ability humans

naturally learn over time, robots need to be explicitly

taught how to do this. This recognition problem is

exacerbated by the differences between robot and

human team members, both mentally/computationally

and physically (Fong et al. 2001; Scassellati 2002).

These differences mean that, when faced with the

uncertainty of the real-world, robots cannot always

count on human teammates to stay on-script, and

cannot always easily anticipate how human teammates

will react when something does go off-script.

One way in which this challenge can be addressed

is by equipping robots with explicit models of

their human teammates. There are many different

techniques that are used to model human cognition

and behavior, spanning different timescales and levels.

In this paper, we begin by introducing a framework

that we find useful for discriminating between and

categorizing these approaches. We then discuss,

compare and contrast the many techniques available

for modeling human cognition and behavior, and

evaluate their benefits and drawbacks in the context

of human-robot collaboration.

Marr’s Levels of Analysis

Marr (1982) recognized that information processing

systems – whether human or not – can be explained

at distinct levels of analysis: the computational level,

1Naval Research Laboratory, USA

Corresponding author:
Laura Hiatt
Naval Research Laboratory
4555 Overlook Ave., SW
Washington, DC 20375 USA.

Email: laura.hiatt@nrl.navy.mil

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

the algorithmic level, and the implementational level.

The different levels correspond to different perspectives

and applications of the processing system. Marr

explains the levels intuitively through the example

of a cash register, which can be conceived of as

a simple information processing device with inputs

and outputs. The computational level describes the

primary function of the system, i.e., what it is doing.

At the computational level, the cash register performs

simple arithmetic, such as addition and subtraction.

Hence, its mathematical functions are clear and

transparent.

The algorithmic level, in contrast, specifies how

a particular function is carried out, as well as

the representations it depends on. The choice of

which representation to use provides constraints on

the kinds of processes the system carries out. For

example, the cash register’s internal representation

of numerical information relies on the use of

a particular representational scheme, e.g., binary,

decimal, hexadecimal, tally marks, and so forth. The

representation constrains the calculations that the

system is able to perform, as well as how fast it

performs them. It’s difficult to perform multiplication

using tally marks, for example, and it may take more

or less time to perform addition and subtraction with

binary vs. decimal numerals.

A description of the system at the implementational

level specifies how the representations and procedures

are physically realized. A cash register that uses

algorithms operating over binary-encoded numerals

implements those algorithms using, possibly, transis-

tors, capacitors, and registers for storing and manipu-

lating electrical signals that represent numerical infor-

mation. This hardware can impose processing and

memory limitations on the algorithms that can run on

it, and so can be important to understand.

Marr’s levels of analysis provide a useful frame-

work within which to organize recent technological

developments in modeling human performance for

human-robot collaboration because they can provide

a guide to clarify and understand what aspect of

human behavior is being modeled. Techniques at the

computational level, for example, are well suited to

situations that would benefit from knowledge of ideal

or typical human performance. Such approaches either

assume perfect rationality, or smooth over human

idiosyncrasies and noisy observations by providing

general accounts and/or mathematical functions of

human performance.

But, humans are prone to systemic errors and

processing constraints, and many approaches to

human-robot collaboration benefit from explicitly

accounting for this. For such approaches, modeling

techniques from the computational level are limited

in their use, since they cannot capture human error

or processing time. After all, knowing that a cash

register can add and subtract does not tell you how

long it takes to add twenty numbers, and so how long

you should reasonably expect to wait in a long check-

out line. Models of performance at the algorithmic

level provide this analysis, and so they can help

maintain interactions that are understanding of noisy

human processes. On the other hand, this lower-level

of granularity means that models at the algorithmic

level are not as well-suited to understanding behavior

that is wider in scope, or over longer timescales.

Approaches targeting the implementational level,

in contrast, can capture how people’s cognition can

vary based on internal (i.e., stress) and external

influences (i.e., caffeine), since both affect the physical

“hardware” of cognition. Implementational level

techniques such as biologically-plausible algorithms

have a strong and promising place in understanding

how the human mind works, but research at this level

is not as well established as research at the other two

levels. Because of this, their contributions are difficult

to meaningfully use for human-robot collaboration.

Using these levels as a framework for organizing

models of human behavior has several benefits. First,

it allows researchers to compare and relate approaches

with one another in a meaningful way. Viewing

approaches in this framework illuminates strengths and

weaknesses of different approaches to modeling humans

that are not always brought out when considering them

in their typical settings or domains, providing insight
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into how each of the approaches can be expanded and

improved. Second, this framework equips researchers

to effectively select which type of model may be best

for their particular situation. The level of analysis of

a particular methodology provides useful guidelines

and prescriptions for how the methodology can aid

and facilitate interactions, and so can be considered

as a starting guide for those looking for an appropriate

methodology for modeling human-robot collaboration

in their work.

Finally, to achieve truly robust and productive

human-robot collaboration, robots should ideally

understand what humans do in general (the computa-

tional level), how they do it (the algorithmic level) and

how cognition is physically realized (the implementa-

tional level). By evaluating different models according

to common criteria, researchers will able to more

effectively combining approaches from different levels

together to achieve better human-robot collaboration.

Other Considerations

When modeling approaches are applied to human-

robot collaboration, they are subject to considerations

that are not always relevant in other situations (such as

the general plan or activity recognition problem). We

have mentioned above two factors relevant to human-

robot collaboration that we believe are related to the

level at which human behavior is being modeled: how

approaches handle noisy human processing; and what

timescale the approach operates over.

Another axis we categorize approaches on is whether

the model is hand-coded or learned automatically.

Additionally, we consider how much data is needed

to train the model. In general, of course, learning

models is preferable to hand-coding them; however,

due to the often high complexity of the models, and the

often limited availability of data on human behavior

in human-robot collaboration tasks, learning is not

always feasible either theoretically or practically.

Finally, the purpose of this paper is to discuss

meaningful ways of modeling and representing human

behavior and activity, and, as such, we have included

a somewhat subjective selection of work on human

modeling in order to accomplish that goal. This is not

meant to be a comprehensive view of human activity

recognition, plan recognition, or modeling techniques

in general.

Computational Models

We begin by discussing four types of models of

human behavior that are computational under Marr’s

framework. These models can be used to capture

general characterizations of human behavior, without

being concerned about the specific processes or

representations that cause the human to behave in that

way.

The first methodology we discuss is simple

probabilistic models, such as those describing cost

functions that capture human behavior, or those

that mathematically describe trajectories of human

movement. Such approaches are useful when trying to

make sense of a human’s low-level signals to better

anticipate or recognize their behavior.

The second computational methodology groups

together several conventional approaches to machine

learning. These approaches also tend to use mathe-

matical functions and formulations to describe human

behavior, but within more general learning frame-

works. These more complicated formulations allow

them to capture a broader array of behavior than

simple probabilistic models, but their representation

still does not generally provide explanations for how

that behavior comes about.

We next describe knowledge-based models, which

take a more symbolic approach to modeling human

behavior. Such approaches typically include libraries

or databases of what people, in general, do when faced

with a certain goal. This allows them to capture human

behavior at higher levels than the more mathematical-

based models, allowing a richer, hierarchical-based

understanding of what people are doing.

Finally, we describe Petri nets, a deterministic

graphical model that treats the behavior of humans

(or groups of humans) as a discrete event system,
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and models how system resources (such as people

or objects) move around over time as activities

are executed. As such, Petri nets are successful at

capturing high-level patterns of behavior, but, as

with the other approaches in this section, provide

little understanding for how or why that behavior is

occurring.

Simple Probabilistic Models

Simple probabilistic models have the most success

when modeling very low-level activities. The use

of simple mathematical and statistical equations

to describe higher-level behavior, instead of more

symbolic or state-based approaches, is of limited

use, because it is harder to understand how to

use simple equations to describe and understand

complicated human behavior directly. In low-level

situations, however, simple probabilistic models can be

a very effective and intuitive way to describe behavior.

Andrist et al. (2015) modeled human gaze behavior

as normally distributed, with separate distributions

for extroverts and introverts. The data used as the

basis for the distribution was collected across several

different human-human interactions. Morales Saiki

et al. (2012) use a similarly simple, but effective, model,

for describing how people walk down a hallway.

Such simple models can be made more powerful

by combining them with filters such as Kalman and

particle filters. These filters take mathematical models

(or other models) and, essentially, unpack them over

several timesteps, correcting their predictions given

possibly noisy observations. This consideration of

sequences of observations or measurements, applied to

a single mathematical model, gives the models more

predictive and explanatory power (Ristic et al. 2004) .

Hecht et al. (2009), for example, used a flexible

mass-spring model to capture human kinematics, and

combine it with a particle filter to create a model of

predicted human movement. Jenkins et al. (2007) also

effectively performed higher-level action tracking from

primitive human motion and kinematic pose estimates

using a particle filter.

Dragan and Srinivasa (2012) provide a framework

for inferring user intent that assumes that users

execute actions by noisily optimizing a goal-dependent

cost function. Then, when inferring a user’s intent,

the framework returns the goal corresponding to

the trajectory with the lowest cost given the

user’s input. Cost functions are either learned via

observation in offline training, or, for more complex

domains, generated using assumptions of expertise and

rationality (such as minimizing distance; others make

this assumption as well, e.g., Fagg et al. 2004). The

generality of the framework makes it suitable for a

variety of tasks; in addition, this approach is notable

for human-robot collaboration because it has been

shown to increase the legibility and predictability of

motion (Dragan et al. 2013). The approach, however,

can be computationally expensive in high-dimensional

spaces, and it depends highly on the availability and

tractability of learning and representing an expressive

cost function.

Conventional Approaches to Machine Learning

Traditional or conventional machine learning models

are common and effective ways of learning human

behavior. We consider here as conventional models

any machine learning approach that: makes the

basic assumption that the training and testing sets

represent the same underlying distribution (Dai et al.

2007); lacks the ability to readily extend to natural

generalizations; lacks the representational power to

express hidden properties; and lacks the ability to infer

existing causal relationships from a handful of relevant

observations (Griffiths et al. 2010). These conventional

approaches have had great success in recognizing

human behavior across a variety of domains, including

social robotics (Fong et al. 2003; Breazeal 2004; Tapus

et al. 2007), learning from demonstration (Billard and

Siegwart 2004) and capturing human affective state

(Liu et al. 2008).

Some of the most common approaches to machine

learning in modeling human activity use discriminative

techniques like Decision Trees (DTs) C4.5 (Ravi
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et al. 2005), Multiple-Layer Perceptions (MLPs)

(Ermes et al. 2008), and Support Vector Machines

(SVMs) (Castellano et al. 2012; Wang et al. 2005).

Discriminative techniques use, as input, data features

extracted from some form of modality (video, audio,

wearable sensors, etc.) and apply a label. The mapping

from features to label is learned using labeled training

data; the model does not need to be constructed

or specified ahead of time. The advantage to using

these discriminative techniques is they can capture

any human activity provided that they can learn from

labeled training data that has meaningful features

available to leverage in the model.

K-nearest neighbors (KNNs) is a non-parametric

discriminative approach that classifies data without

learning an explicit classification function. Given

data features extracted from input data of various

modalities, KNNs store all training examples and

use distance metrics, such as Euclidean, to classify

a new case to its closest points. As with the other

discriminative techniques, KNNs can be applied to

most situations where labeled data is available; for

example, Mower et al. (2007) applied KNNs to

using human physiological signals to capture user

engagement in an HRI task. Notably, KNNs have been

shown to be effective not only at classifying human

behavior, but also at generating it by sampling in

the discovered regions, which makes it very useful for

human-robot collaboration (Admoni and Scassellati

2014).

Gaussian Mixture Models (GMMs) have similar

inputs and outputs to KNNs; however, while KNNs

result in a single label for each point, GMMs represent

a point by a vector of class label likelihoods. GMMs

thus can better handle some degree of uncertainty in a

human’s activity (Calinon et al. 2007). GMMs can also

provide fast and early classification. Pérez-D’Arpino

and Shah (2015) learn GMMs of human motions, based

on the DOFs of the human arm, in order to anticipate

their intended target more quickly. Here, the human’s

activity is constrained to reaching motions, and, in

part because of this assumption, the authors are able

to quickly and accurately anticipate the target of the

reaching action.

A technique that has become very popular in

recent years is deep learning. Deep learning is a

technique that takes raw data and learns the best

features to extract for classification, as opposed

to relying on the modeler to specify how features

should be extracted (Schmidhuber 2015). A common

classification technique that uses deep learning is the

convolutional neural network (CNN). CNNs typically

use either raw images or video as input and apply

image convolutions and other reduction techniques to

extract a learned feature vector (Krizhevsky et al.

2012; Tang 2013). Deep learning has shown excellent

results in pose recognition (Toshev and Szegedy 2014)

and large-scale video classification (Karpathy et al.

2014). The drawback to using CNNs and other deep

learning techniques is that because both the features

and the model are discovered through the data, a

significant amount of data must be gathered in order

to avoid overfitting.

Two major benefits of using conventional machine

learning approaches for human-robot collaboration are

that the model does not need be specified ahead of

time, and that there are many existing, off-the-shelf

techniques to chose from. On the other hand, many

of these approaches can require extensive data to

train effectively, and the goodness of the model is

very dependent on the data that is chosen, both in

terms of the specific training data used and in how

features are extracted from that data. Additionally,

using large, expressive feature vectors can cause the

training time to grow exponentially, making it difficult

to train models in a timely manner. Finally, the lack of

structure of many of these models means that temporal

sequencing and dependencies of activities is not easily

taken into account. For these reasons, conventional

machine learning approaches, like simple probabilistic

models, are best suited for modeling lower-level, short-

term human activities, as opposed to longer-term tasks

and goals.
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Knowledge-Based Models

Knowledge-based models compare human behavior

against ontological or knowledge-based representations

of how tasks are typically executed in the world.

An intuitive example of this is matching a human’s

behavior to a pre-specified planning library. By

specifying general domain knowledge, these approaches

can provide a clear view into a computational-level

understanding of human behavior. Some of the earliest

approaches to plan recognition used this approach

(Lesh et al. 1999; Wilensky 1983; Perrault and Allen

1980).

Breazeal et al. (2009) approaches this mapping at

a slightly deeper level, mapping human motions and

activities onto the robot’s own model of actions and

activities. While this approach is useful when the

robot and the human have very similar capabilities,

both in terms of motions (i.e., both have arms to

move) and activities (i.e., both represent plans the

same way), it does not easily translate to situations

where robots and humans are in less accordance. Many

other approaches that assume a shared representation

of domain knowledge have similar limitations (e.g.,

Levine and Williams 2014; Rota and Thonnat 2000),

although some approaches have alleviated this by

including in their representation multiple ways to

complete tasks (a canonical example is Kautz and Allen

1986’s specialization recipes).

Knowledge-based approaches to human modeling

also can include temporal reasoning about human

actions (e.g., Nevatia et al. 2003; Vu et al. 2003;

Avrahami-Zilberbrand et al. 2005). This can help to

further understand human behavior by taking expected

task duration into account. It is worth noting, however,

that task duration here is qualitatively (but subtly)

different from the processing durations commonly

associated with the algorithmic level: it is capturing

the duration of the task and the human’s behavior

as viewed by an external observer, not the duration

of the human’s internal processing and behavior when

reasoning about or performing the task.

In general, these approaches, while effective and

generally fast (Maynord et al. 2015), place some strong

assumptions on the human’s behavior. They assume

that their domain knowledge is complete; further,

the extensive domain knowledge must be manually

changed and updated for every new situation, which

is ultimately unrealistic for fully functioning robotic

agents (Carberry 2001; Turaga et al. 2008). Such

assumptions also imply that these approaches cannot

handle human actions or intentions outside of their

knowledge, such as human error (although Avrahami-

Zilberbrand et al. 2005 is one exception that can handle

lossy observations).

On the other hand, there are clear and intuitive

ways in which these approaches can be combined with

other approaches in order to alleviate some of these

shortcomings. Many more recent knowledge-based

models are combined with statistical techniques to

improve their functionality. Nevatia et al. (2003) use a

hierarchical representation language to describe human

activities, and use Bayesian networks to recognize

primitive events and Hidden Markov Models (described

in more detail below) to recognize higher-level events;

other approaches also take this route (e.g., Blaylock

and Allen 2014). In addition, recent work in goal

reasoning (Gillespie et al. 2015) allows autonomous

agents to dynamically adapt their goals to changing

situations; if a cost or preference function for such

changes were derived that was based on human

behavior, it could allow these approaches to relax the

assumption that the human’s goal is known.

Petri Nets

Place/Transition Petri nets (PNs) are a type of

deterministic graphical model that models humans

and their interactions with the world as a discrete

event system and tracks how the system’s resources

change over time. PNs consist of states (here called

“places”), which contain sets of tokens. In human-robot

collaboration, these tokens can be used to represent

discrete resources, which are then consumed, produced,

or transferred to a different place (representing, for
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example, a change of location) by actions (Murata

1989). The places, transitions and tokens of PNs are

modeled deterministically. A human’s action can be

recognized by comparing the actual state of the world

with the overall state of the Petri Net (such as the

locations of resources). If the states match, that action

can be thought to have taken place; otherwise, a

different action explaining the state of the world should

be found.

Because PNs model the world in terms of resources,

they can effectively handle concurrency (such as

representing two agents as different resources). This

also makes Petri nets well-suited to capturing high

level activity such as people’s (or groups of people’s)

movements over time, as opposed to lower-level

activity (which would benefit from modeling resources

continuously). The straight-forward representation of

Petri nets also makes it intuitive to combine them

hierarchically (Castel et al. 1996). As such, Petri nets

are often used in surveillance applications, such as

tracking cars in a parking lot to detect anomalies

(Ghanem et al. 2003).

The structure of the Petri net must be hand-coded

ahead of time, and the deterministic aspect of the

model places a high burden on the structure very

accurately representing the activity. The determinism

of Petri nets also presents a challenge for its ability

to accurately capture many tasks involving humans,

although recent work has attempted to add in more

tolerance of human variability. Albanese et al. (2008),

for instance, worked towards plan variation in a

surveillance setting by enabling the model to account

for skipped actions. Lavee et al. (2010) accounted for

temporal variation by allowing actions to occur at

stochastic time intervals, enabling, for example, the

PN to account for variance in humans’ daily schedule

or routines. More complicated activity can also be

modeled by using a separate PN for each possible

action (Ou-Yang and Winarjo 2011), with little

additional computational overhead. This movement

towards more explicitly accounting for uncertainty in

Petri nets seems to correspond to an increasing use

in human-robot collaboration. Ultimately, if this work

continues, it also may place this approach at the

boundary of the computational and algorithmic levels

of Marr’s framework. For now, however, the underlying

theory is not yet established enough and so it remains

at the computational level.

Computational Models Discussion

In general, these approaches all target modeling

human behavior at the aggregate level, whether by

constructing general plan libraries of what people

typically do when completing a task, or by learning

a single, idealized model of human behavior based

on many data points. This type of knowledge can

be effectively leveraged by many types of tasks

in human-robot collaboration. In particular, many

of these approaches are most useful when one is

mostly concerned with identifying human behavior

without evaluating it or reasoning about why the

human is doing what they are doing. The knowledge-

based approaches are an exception to this, as they

can potentially provide some intuition about the

validity of the human’s actions. As we will see,

however, algorithmic approaches are better positioned

to provide this knowledge in a way that allows a robot

teammate to help clarify and, potentially, correct the

human’s action.

Computational and Algorithmic Models

In this section we describe methodologies that span the

bridge between Marr’s computational and algorithmic

levels. These models, like the above ones, are

typically tailored towards capturing human behavior

at a general level; however, the approaches in this

section either have representations more suited to

modeling human behaviors or intentions, or the

algorithms are better at capturing less idealized and

more idiosyncratic behavior. Therefore, even if work

applying these methodologies to the algorithmic level is

not well established, we believe the supporting theory

is established enough to include them in this bridged

category.

Prepared using sagej.cls



8 Journal Title XX(X)

We begin by discussing Hidden Markov Models,

and other Markov-based approaches. While HMMs

are sometimes considered a conventional machine

learning approach, we do not group them with those

approaches because of (1) their ability to express

latent variables; and (2) their inspectable model

structure. These properties also put them on the

border of computational and algorithmic levels. These

approaches model behavior as transitions between

states; such states are typically unobservable, and can

be used to represent hidden human intentions and

thoughts. These approaches have indirectly been shown

to be robust to some classes of human idiosyncracies

(such as forgotten actions), and we believe the

potential is there for more. The same can be said for

the second methodology we discuss, Dynamic Bayesian

Networks, which are a generalization of Hidden Markov

Models and have been shown to also be able to capture

aspects of human beliefs and learning.

Topic models, on the other hand, do not model

the structure of activities, and instead consider sets

of observations holistically to decide how to label an

activity. This allows them to be robust to variations

in the patterns and timing of human activities, which

is why we include them in this category. As with

HMMs, topic models are sometimes considered as a

conventional approach to machine learning, but we

include them here because they also can express latent

variables.

We finally discuss grammar-based models. Because

of the unique way in which grammar-based models

can probabilistically generate behavior, they can

also capture idiosyncratic and non-idealized human

behavior, and we include them here to highlight this

flexibility.

Hidden Markov Models

Hidden Markov models (HMMs) are one common

and effective way of modeling human behavior.

An HMM consists of a set of possible states

(which are hidden, or not directly observable) and

probabilistic transitions between them. States can

also probabilistically result in observations. Given

a sequence of observations, statistical calculations

(i.e., inference) can be used to find the most likely

current state (Blunsom 2004). These calculations are

simplified by the Markov assumption, which assumes

that each state is independent of past states. Various

forms of HMMs have been used in a variety of

contexts, including robotics (Bennewitz et al. 2005),

computational biology (Eddy 2004), and natural

language processing (Blunsom 2004), among others.

The structure of the HMM is typically determined

a priori; then, given data, the probabilisitic values of

the transitions and observations can be learned using

the Baum-Welch algorithm (Baum 1972), a form of

Expectation-Maximization. Although the run-time of

this algorithm grows exponentially with the number of

states, it is also typically run offline and ahead of time.

When using the model for inference online, the Viterbi

algorithm allows the most likely sequence of hidden

states resulting in the observations to be found in or

near real-time (Rabiner 1989).

HMMs very naturally capture tasks that execute

actions in a fairly rigid sequential order. Additionally,

because states must be enumerated ahead of time,

HMMs are well suited to recognizing tasks comprised

of sequences that are easily written by hand.

Thus, HMMs are a common choice for modeling

human behavior in tasks involving manipulation and

teleoperation (e.g., Yu et al. 2005; Aarno et al. 2005;

Iba et al. 1999).

As the behavior or task being modeled becomes more

complicated, the models themselves do, as well. Li and

Okamura (2003) capture different intended actions of

an operator haptically controlling a robot by defining

a model where each action corresponds to a different

trained HMM. The model with the highest cumulative

likelihoods of observations is selected as the identified

action; Kelley et al. (2008) have a similar structure.

This structure allows these approaches to capture

behavior as it is occurring, since it is not necessary to

wait for the goal to be completed to observe it (Kelley

et al. 2008).
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The hierarchical and abstracting trend of HMMs

also allows for recognition of behavior at higher levels

(White et al. 2009; Bui et al. 2004, 2002). Nguyen

et al. (2005) describe their application of hierarchical

hidden Markov models to identifying human behavior

within a controlled environment, and they also discuss

the need for a Rao-Blackwellised particle filter (RBPF)

to approximately solve the HMM for the most likely

state and allow the approach to run in real time.

Other structured, hierarchical-like formulations have

also been used, such as coupled HMMs for modeling

interactions (Natarajan and Nevatia 2007), layered

HMMs for analysis at varying temporal granularity

(Oliver et al. 2002), and factorial HMMs to provide

better generalization capabilities (Kulić et al. 2007).

Even with the RBPF approximation

and other recent work on tractability

(Doucet et al. 2000; Bui 2003), however, these more

sophisticated HMMs can still struggle with tractability

and running in real-time. Another downside of the

extra complexity is that it also requires more data to

train in order to avoid overfitting the model to the

observed data (Ghahramani 2001) .

Vasquez et al. (2008) work towards avoiding this

issue by using an approximate learning algorithm based

on the Growing Neural Gas algorithm to learn HMM

parameters online and incrementally; they also use

it to learn the structure simultaneously, removing

the requirement of knowing the HMM structure a

priori. Other heuristic approaches also work towards

learning or refining a model’s structure (Stolcke and

Omohundro 1993; Freitag and McCallum 2000; Won

et al. 2004). However, the problem of structure learning

for HMMs is difficult to solve generally due to the very

large search space, and is still an active area of research.

An expansion of HMMs that can also be used

for human-robot collaboration is the Markov-based

planning framework of Partially-Observable Markov

Decision Processes (POMDP). The structure of a

POMDP is very similar to an HMM, except that it also

includes actions that can influence the probabilities of

being in various states. The user’s preferred sequences

of actions (called policies) for different goals can

be learned using Inverse Reinforcement Learning

(Choi and Kim 2011; Makino and Takeuchi 2012) .

The resulting model can then be used to infer

or classify user intents (called policy recognition)

in human-robot interaction; however, a very high

computational expense makes it difficult for this to

occur in real time (Ramırez and Geffner 2011). These

approaches can also be used to generate human-like

behavior by using the learned policy as the basis for

developing a plan for the robot.

Markov planning frameworks can also be used to

factor the human’s behavior into the robot’s actions.

A variant of POMDPs, MOMDPs, includes the same

hidden states to represent the human’s intent or

actions as POMDPs, but also includes fully-observable

states to represent the robot’s intents and actions.

Nikolaidis et al. (2014), for example, models human

users by classifying them by ‘type’ (such as “safe” or

“efficient”); they then use that knowledge as part of a

MOMDP, where the user type is considered the hidden

variable, allowing the robot to better plan around its

human counterpart.

Overall, Markov-based models like HMMs present

both benefits and challenges to modeling humans

for human-robot collaboration because of the Markov

assumption and their sequential nature. Many

HRI tasks, especially low-level ones like assistive

teleoperation and shared control, are sequential in

nature and so are easily and naturally represented

as Markov chains; on the other hand, non-sequential

tasks, such as plans that are partially ordered, are

difficult to capture using these approaches.

The explicit sequences and connections between

states also make it natural to predict what a human

will do next based on what it is believed the human

is currently doing; on the other hand, it prevents the

models from capturing some of the more “human”

aspects of human teammates, such as divergent beliefs,

interruptions, distractions, or errors.
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Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are general-

izations of Hidden Markov Models (Dagum et al.

1992; Murphy 2002). In DBNs, however, the unary

state variables are replaced by multi-variate, mixed-

observability Bayesian networks. Each such net-

work/observation pair is referred to as a time slice.

DBNs also adhere to the Markov assumption.

DBNs are more powerful than HMMs due to their

ability to represent intradependencies between vari-

ables at the same time slice, as well as interde-

pendencies between variables at different time slices.

This allows models to capture correlations/causations

between variables occurring at the same time, as well

as how those variables may influence future state

variables. These correspondences provide DBNs with

the ability to combine input from multiple modalities,

which can be very useful for human-robot collaboration

where humans can simultaneously provide audio, visual

and gestural data. In Oliver and Horvitz (2005), for

example, the authors compared two systems that used

data from video, audio and computer input. One of

the systems trained a unique HMM for each data

modality and the other system used a single DBN

that had state variables and conditionals between

variables across modalities. They found that the DBN

outperformed the ensemble of HMMs when classifying

office activities.

These correspondences also allow DBNs to be more

robust to missing information, such as incomplete or

partial observations of a human’s actions, which is

why we consider them to span the bridge to Marr’s

algorithmic level. Also supporting this position is work

in cognitive science that leverages the flexibility of

DBNs to capture human beliefs, desires and learning

(Baker et al. 2011). This understanding can then be

used to better interpret and predict the actions of

others (Baker et al. 2005). Similar approaches have

also been used to capture specific cognitive phenomena

such as concept learning of shapes (Tenenbaum 1999),

the production of co-verbal iconic gestures (Bergmann

and Kopp 2010), and story understanding (Charniak

and Goldman 1993).

Like with HMMs, the structure of DBNs must be

defined a priori and by hand, typically by a domain

expert. This is especially difficult in real-life situations

where there are typically very large number of state

variables with complex interdependencies. Also as with

HMMs, structured learning research is being done to

develop models automatically, but so far results are

limited to specific problem domains (Gong and Xiang

2003; Pavlović et al. 1999).

An advantage of using a DBN is that generic

learning and inference procedures can be used for

any model. This gives researchers the flexibility to

design models that are very representative of the

behavior they are trying to capture without having

to worry about how to solve them. On the other

hand, the different optimizations available for learning

and solving existing, well-defined, HMM structures

are not available for general DBNs. Further, learning

the parameters of large DBNs requires very large

amounts of training data, which can make it difficult

to take advantage of their representative power to

capture sophisticated or long-term behavior. This

limits their applicability for large-scale human-robot

collaborations since it can be difficult to collect the

large amount of data that would be required to train

these networks. For that reason, DBNs as well as their

HMM cousins tend to be used on specific, short-term

or well-defined domains.

Topic Models

Topic models were originally designed for understand-

ing text documents, and so are typically described

using lexical terminology. We adopt this here to be

consistent with the topic model literature.

Topic models are hierarchical, “bag-of-words”

models that, canonically, ignore temporal-spatial

dependencies between observations (Blei et al. 2003).

There are two stages used to classify a sequence of

observations. The first is identifying or learning a

transformation function that bins each observation into
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one of a set of possible words. Although theoretically

any type of transformation function could be used for

this, often K-means clustering is used.

The second level of classification involves classifying

the distribution of words seen across a series of

observations as a topic, or a mixture of topics. This

represents the overall classification of, for example, an

observed human activity. The mapping of distributions

of words to topics can be done either in a supervised

(as in semi-Latent Dirichlet Allocation; Wang and Mori

2009) or unsupervised manner (as in Latent Dirichlet

Allocation (LDA), one of the most common topic

models used; Blei et al. 2003). LDA has successfully

been used to learn without supervision, for example,

human activity from RGB-D video sequences (Zhang

and Parker 2011).

Since most topic models ignore the spatio-

temporal information of observations, they provide an

understanding of the overall activity being performed

that is robust to variations in lower-level activity

order and position. This helps them be adept at

recognizing human activity over larger timescales.

In Huynh et al. (2008), topic models were used to

automatically discover activity patterns in a user’s

daily routine; Rieping et al. (2014) take a similar

approach. A daily routine cannot be easily specified by

hand, as variable patterns exist for each activity within

the routine, the routines range over a long period of

time, and routines very often vary significantly for each

instance. The robustness to temporal variation allows

LDA to capture these routines, and is why we consider

topic models to span the bridge between the Marr’s

computational and algorithmic levels.

Of course, the bag-of-words approach does not

perform well in all domains, such as those where

activities are typically performed according to

dependencies between them. Due to their bag-of-words

representations, much of the temporal information is

lost unless it either encoded into the words, or the

LDA model is modified to incorporate the temporal

information in some way.

The first approach is taken by an extension to

LDA, the Hierarchical Probabilistic Latent (HPL)

model (Yin and Meng 2010), that encodes temporal

information into the words of the model. Freedman

et al. (2015) take the second approach, combining LDA

and HMMs to perform human activity recognition

using RGB-D data. The approach uses HMMs to

incorporate in temporal information at the word level.

Griffiths et al. (2004) take a similar approach.

The unsupervised aspect of LDAs helps them avoid

many of the downfalls of the graphical models we have

discussed, since the structure does not have to be hand-

specified. On the other hand, it requires significant

training data to discover activities on its own.

Grammar-Based Models

Context-free grammars use productions rules to specify

the structure of a model. The rules specify how higher-

level symbols (such as “drink coffee”) can be composed

by lower-level symbols (such as “pickup mug”, “sip”

some number of times, then “put down mug”). These

production rules can then be used to model human

behavior. For example, sequences of human actions

can be recognized (such as by using HMMs and BNs;

e.g., Ryoo and Aggarwal 2006) and then parsed using

a grammar to better understand the structure of the

behavior (Vilain 1990); these algorithms also tend to

be efficient (Earley 1970; Turaga et al. 2008), making

them useful for real-time human-robot collaboration.

Similar to some of the knowledge-based approaches

above, however, these approaches in general make

strong assumptions about ordering, and assume human

perfection and predictability.

More recent approaches to using grammars to model

human behavior address various aspects of these

criticisms. In particular, stochastic variants (SCFGs)

relax some of the assumptions of infallibility and

correctness of sensor data. Moore and Essa (2002) use

SCFGs to recognize multi-task activities. By allowing

for uncertainty, they can account for errors due to

substitution, insertion or deletion of actions. While in

their approach they use this ability to robustly handle

errors in sensing, these errors could also be caused by

human fallibility, adding an algorithmic component to
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this computational model. Ivanov and Bobick (2000)

and Ryoo and Aggarwal (2009) demonstrate a similar

resistance to errors.

An extension of SCFGs, probabilistic state-

dependent grammars (PSDGs) (Pynadath and Well-

man 2000) include the consideration of the current

state into the probability of a production. This allows

preconditions and other state-dependent factors to

affect its analysis. Given a fully observable state, the

complexity of the recognizer is linear in the number

of productions; however, given unobservable variables,

the recognizer quickly fails to run in real time. It is

also difficult to learn the model’s parameters. Geib

(2012) also includes the state into the grammar, but in

a manner that allows for the better handling of loops

in activities.

One challenge of using grammar-based approaches

that remains unsolved is the difficulty of specifying

and verifying the production rules and set of

possible activity sequences that can be generated

from it. Kitani et al. (2007) took a step towards

addressing this problem by developing an algorithm

that automatically learns grammar rules for an SCFG

from noisy observations. In this work, however, the

authors made several strong assumptions about the

characteristics of the noise, and this remains a difficult

problem to do generally (De La Higuera 2000). This

is especially a problem for human-robot interaction

where it is important that our model matches the

human, and we view this as a major downside of using

these approaches for modeling humans for human-

robot collaboration. The difficulty in specifying and

learning grammars also suggests that grammar-based

approaches are best applied to structured domains;

illustrating this, state of the art approaches are often

demonstrated on regimented tasks such as the Towers

of Hanoi (Minnen et al. 2003) and cooking (Kuehne

et al. 2014).

Computational and Algorithmic Models

Discussion

While understanding behavior at the computational

level is sufficient and useful in many cases, most

such approaches could benefit from some basic

understanding of human reasoning, fallacy and error.

In our opinion, this is a critical direction to head

towards as we continue to expect more from our robot

collaborators. Even on simple, routine tasks, humans

make errors stemming from well-documented cognitive

phenomena (Reason 1984) . The approaches described

in this section, although mostly situated at the

computational level, recognize, or have the potential to

recognize, some of this human stochasticity. And while

they do so with little intuition on how these errors

come about, or without explicitly representing human

reasoning, the tolerance they display increases their

utility to human-robot collaboration, both by making

their inferences more robust to noisy teammates, and

by allowing them to help recognize when human

teammates may unknowingly go off-script.

Algorithmic Models

The next set of methodologies we describe are classified

as purely algorithmic in Marr’s framework. These

models strongly focus on capturing the representations

and processes of human cognition, including the noisy

aspect of human processing, and in large part assume

that the question of what the human is doing is

already known (such as by using one of the above

computational accounts).

ACT-R/E (Trafton et al. 2013) is a cognitive

architecture that models human cognition and memory

at the process level. Each model written in ACT-R/E is

typically specific to a task and must be verified against

human performance for that task; once this initial work

has been completed, however, models display a high

fidelity to human behavior both in terms of reaction

time and errors.

The model mReasoner captures the representations

and processes people use to perform deductive and

probabilistic reasoning. Given a set of facts or
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statements about the world, mReasoner can predict

the difficulty of drawing conclusions from those facts.

MAC/FAC (Forbus et al. 1995) models similarity-

based retrieval. In terms of human-robot collaboration,

this allows it to capture how people think of, for

example, problems or decisions from the past that

are similar to a problem they currently face. This

potentially allows a robot can better reason about why

a human went off-task: they could have remembered

an alternate solution to the problem. The usefulness

of this approach depends, however, on how much

background knowledge it is given at the outset of an

interaction.

ACT-R/E

ACT-R/E (Adaptive Character of Thought-

Rational/Embodied) (Trafton et al. 2013) is a hybrid

symbolic/sub-symbolic production-based system based

on ACT-R (Anderson 2007). ACT-R/E is a cognitive

architecture that is meant to model human cognition at

the process level and to address how humans’ limited-

capacity brains handle the information processing

requirements of their environment. ACT-R/E’s goals

are to maintain cognitive plausibility as much as

possible while providing a functional architecture to

explore embodied cognition, cognitive robotics, and

human-robot interaction.

Given declarative knowledge (fact-based memories)

and procedural knowledge (rule-based memories), as

well as input from the world (visual, aural, etc.), ACT-

R/E decides what productions in the model to fire

next; these productions can change either the model’s

internal state (e.g., by creating new knowledge) or its

physical one (e.g., by deciding to move its hand). It

makes the decision of what production to fire next

based on a) symbolic knowledge, such as who was where

at what time; and b) subsymbolic knowledge, such as

how relevant a fact is to the current situation, or how

useful a production is expected to be when fired.

In terms of Marr’s levels of analysis, models written

in ACT-R/E are almost always at the algorithmic level:

their representations and processes are well grounded

in theory and empirical data. For example, ACT-R/E’s

declarative memory system (memory for facts) is based

on the concept of activation. Activation values are a

function of how frequently and recently that chunk

has been accessed, as well as the extent to which the

current context primes it (i.e., spreading activation).

Cognitively, a chunk’s activation represents how long

an ACT-R/E model will take to remember a chunk,

if it can even be remembered at all. The theory

that underlies activation values has been empirically

evaluated in numerous situations and across various

tasks, and has been shown to be a remarkably good

predictor of human declarative memory (Anderson

et al. 1998; Anderson 1983; Schneider and Anderson

2011).

ACT-R/E models excel at capturing human

behavior in relatively low level tasks or sub-tasks, such

as predicting how long it takes someone to execute a

task (Kennedy and Trafton 2007), predicting whether

someone has forgotten a step in a task or a story

(Trafton et al. 2011, 2012), or determining when

someone needs additional information because their

understanding of the situation is incorrect (Hiatt and

Trafton 2010; Hiatt et al. 2011). These capabilities have

clear value for human-robot collaboration.

ACT-R/E also, however, has several weaknesses

for HRI. One weakness is that both models and

parameters must be hand written and then verified

against empirical data to confirm that the system as

a whole captures human’s behavior for a given task;

there is currently no approach that learns the models

in an unsupervised fashion. Mitigating these weakness,

however, is that a relatively small amount of data is

needed to verify any individual model. This, in large

part, stems from the large amount of research and

experimentation that has been done to develop and

validate the architecture as a whole.

A second weakness is that ACT-R/E models are

generally written at a task level that is quite

specific and can be limited in scope. For example,

understanding when and why someone forgets their

medicine at a specific time is simple to model, but

creating a model that takes into account a person’s
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entire daily medicine routine would be extremely

complex and difficult to capture.

mReasoner

mReasoner is a cognitive model of human deductive

and probabilistic reasoning (Khemlani and Johnson-

Laird 2013; Khemlani et al. 2015). Its goal is to

explain why humans find some inferences easy and

other inferences difficult (Khemlani 2016). It is based

on the theory that to reason, people construct and

revise representations known as mental models from

their knowledge, discourse, and observations. A mental

model is an iconic simulation of a situation, i.e., its

parts and relations corresponds to the structure of

what it represents (Craik 1943; Johnson-Laird 2006).

mReasoner’s fundamental operations include mech-

anisms for building, scanning, and revising models.

It embodies two fundamental processes of inference

(Kahneman 2011) required to build and manipulate

mental models: intuitions concern how people rapidly

construct models and draw inferences; deliberations

concern how they revise their initial models and

conclusions to correct errors. The system predicts

that the more models that are required to carry out

an inference, the more difficult and error-prone that

inference will be. It also characterizes what those errors

are. For example, the following reasoning problem:

• The fire happened after the alarm.

• The evacuation happened before the alarm.

• Did the fire happen after the evacuation? (Yes,

necessarily.)

should be easy, because the system needs to generate

just one model to solve it: one in which evacuation

occurs, then alarm, then fire. In contrast, for this

reasoning problem:

• The fire happened before the alarm.

• The evacuation happened before the alarm.

• Did the fire happen after the evacuation? (Not necessarily,

but it’s possible.)

people often overlook the possibility that the fire can

happen before the evacuation. mReasoner solves it

by generating multiple models; it can explain people’s

difficulty as well as their erroneous responses.

mReasoner’s ability to simulate common reasoning

errors based on mental models makes it a useful tool in

human-robot collaboration. Previous studies show that

physical interactions are more robust when humans

and robots rely on shared mental models of their

environments and their tasks (Kennedy and Trafton

2007), and inferential interactions should follow the

same constraints (Stout et al. 1999). When robots

have access to a simulation of people’s knowledge and

their intuitive and deliberative inferential processes,

they can anticipate human errors and provide remedial

support.

One advantage of mReasoner for HRI is that its

mechanisms are based on offline analyses of existing

patterns in human reasoning; hence, as with ACT-R/E,

it does not require extensive online training on large

datasets compared to machine learning techniques.

Nevertheless, its parameters allow the system to

predict reasoning patterns from individual people

(Khemlani and Johnson-Laird 2016). One limitation,

however, is that it reasons over linguistic assertions

instead of sensor data, and so robots that interface

with it must be able to convert observations to a

set of premises akin to the examples above. Carrying

out those conversions in an efficient way remains a

challenge for robots.

MAC/FAC

MAC/FAC is a model of similarity-based retrieval

(Forbus et al. 1995). It captures how humans remember

things that are similar to a given cue, such as

remembering a story like one you just heard, or

trying to solve a puzzle by remembering a similar

one you solved in the past. Complicated concepts like

this can have similarity across different levels, such

as two, shallowly related stories about a dog named

Rover, or two more deeply related stories that both

have a protagonist travel after a life-changing event.

The approach models how concepts like these are
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represented in memory, as well as the operations that

take place to retrieve them when needed.

The approach posits that retrieving these similar

items happens in two stages: the fast MAC (“many

are called”) stage, where many items with surface

similarity are selected as candidates; and the slower

FAC (“few are chosen”) stage, where deeper similarity

and analogical reasoning are considered (Gentner

1983). This makes important predictions for human

behavior during, for example, problem solving. If a

human partner begins to solve a puzzle too quickly

after a prompt, it is possible that they are solving it

using a strategy from a different problem that is only

shallowly related. On the other hand, if the human

deliberates longer, they may have deeply mapped the

current problem to one with a similar structure that

therefore is likely to share a similar solution.

Similar to mReasoner, then, the approach can

capture human errors and response times on certain

types of tasks and so is a useful tool in human-robot

collaboration. Additionally, as with mReasoner and

ACT-R/E, because of the large amount of research

and experimentation that has been done to develop

this model, it can be validated in new situations with

a relatively small amount of data. MAC/FAC also

suffers from similar shortcomings, in that it models

only one facet of human reasoning and so is most useful

in conjunction with other approaches. The ubiquitous

nature of the facet it captures, however, including

analogical reasoning, is useful in many domains of

human behavior (Liang and Forbus 2014; Lovett et al.

2009)

Algorithmic Models Discussion

The approaches discussed in this section model

behavior at the algorithmic level of Marr’s framework,

and focus on capturing the representations and

processes of human behavior to capture the how

of human behavior and cognition. A fundamental

advantage to basing human-robotic interactions

on algorithmic accounts is that their explicit

representations can allow the approaches to benefit

related models and tasks. As a specific example,

humans spontaneously use gesture to communicate

about conceptual and spatiotemporal information,

because gestures can improve thinking and reasoning

(Bucciarelli et al. 2016; Wagner et al. 2004). Gestures,

however, can be also outward signs of internal

mental representations (Hostetter and Alibali 2008,

2010). Thus, using these algorithmic approaches to

understand human reasoning can also enable robots

to better understand their teammates’ gestures, and,

further, produce their own gestures in a way that helps

their teammates grasp complex situations efficiently.

This type of coupling between human cognition and

physical gestures cannot emerge from computational-

level theories; it requires an algorithmic account of

relevant mental representations and their associated

operations.

One downside of algorithmic approaches is that,

for many of these models, the specific reasoning

processes they capture are in isolation from another.

For example, the above models can capture that

you have retrieved an incorrect memory or made an

incorrect inference, but not both. Additionally, unlike

when capturing people’s overall, observable behavior,

the unobservable nature of people’s thought processes

and representations leads to difficulty modeling them

explicitly and faithfully over long periods of time, or

on tasks that are wide in scope. This typically leads

to models at this level that are fairly narrow in scope

and short in timescale. Although these limitations

are practical ones, not theoretical ones, they are

nonetheless difficult to overcome, and we view these

shortcomings as the biggest downside of algorithmic

models.

Implementational Models

Implementational models capture how algorithms are

physically realized. This can be used to understand the

processing and memory capabilities, and limitations,

on algorithmic processes of human cognition (Stewart

and Eliasmith 2008). Leabra (Local, Error-Drive

and Associative, Biologically Realistic Algorithm), for
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example, is a model of the brain’s neocortex that

captures many of the biological principles of neural

processing (Kachergis et al. 2014); Spaun is another

biologically-plausible model (Stewart and Eliasmith

2008).

In our view, the implementational level represents

a promising area of research that can capture how

people’s cognition varies from internal and external

influences. For example, the implementational level

would include models of how stress might affect

a worker’s ability to focus, or how alcohol and

caffeine can influence cognition. Models at this level,

however, are very much still in the early stages

of research, and so are difficult to use for human-

robot collaboration in their current form. Currently,

their useful predictions are better incorporated into

approaches tailored at the algorithmic level, such as

ACT-R/E (Vinokurov et al. 2012).

General Discussion

In this paper, we have discussed various techniques

for modeling human cognition and behavior. Using

Marr’s levels of analysis, we have categorized different

methodologies depending on what aspects of human

cognition and behavior they capture. We have also

discussed specific properties of the methodologies that

affect their benefit to different scenarios in human-

robot collaboration, such as how they handle human’s

noisy processing, and whether the models’ structures

are hand-coded or are learned from data.

When modeling human behavior and reasoning for

human-robot interaction, it is important to select

the methodology that will best further ones goals

for the collaboration. These approaches have different

knowledge to offer to human-robot collaboration. For

example, assume that a researcher would like to use a

robot to help a person stack boxes in a specific order. A

computational-level model would be able to recognize

what action the person was taking, or what object the

person was reaching for. An algorithmic-level model

would not be able to recognize these things, but, given

them, but would be able to model why the person took

that step, even if it was erroneous. A model at the

implementational level could predict how the person’s

performance might degrade if they got little sleep the

night before.

To help to better understand how the different

levels and approaches address different modeling needs,

we next discuss two different graphs that compare

the approaches given the considerations that, as we

have described, naturally stem from Marr’s levels of

analysis: how they handle human errors, how much

data is required to train them in new domains, whether

the model structures can be automatically learned

or must be hand-specified, and the timescale that

they typically operate over. We follow that with some

discussion of how the approaches can be combined to

make use of their complimentary strengths.

Comparison of Approaches

As we have discussed, computational approaches to

modeling human behavior focus on recognizing what

a human is doing, algorithmic approaches focus on

how the human accomplishes his or her task, and

implementational approaches focus on how those

operations are physically realized. As we have shown,

there are a variety of approaches that have been

developed to model each of these levels, each with their

own strengths and weaknesses.

Figure 1 compares the different approaches accord-

ing to how they handle human error, and the timescale

that the approaches generally operate in. It shows a

clear correlation between the different levels and how

the approaches handle the noisiness of human pro-

cessing time and error. Computational approaches, as

expected, generally assume perfect rationality and are

sometimes robust to noisy observations; computational

and algorithmic borderline approaches are typically

robust to noisy observations and, in some limited cases,

can account for human processing errors; and algorith-

mic approaches focus on accounting on errors and noise

in human processing. Implementational approaches,

in contrast, do not clearly fit into this trend. We

expect, however, that as approaches at such levels
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Figure 1. Plot of different approaches considering how they
handle errors, as well as the timescale that the approaches
generally operate in.

become more established, they will become stronger

at accounting for noisy human processes and errors.

This figure also suggests that the approaches that

are robust to noisy observations, but that do not

explicitly model them, are those that have the most

success operating at long time. Intuitively, this makes

sense. Over long periods of time, models that assume

perfect rationality will likely diverge from the human’s

true state; in contrast, models that explicitly capture

human processing noise will be left with a state space

that is too large to reason over. In addition, the

representations of these two groups of models does

not lend themselves well to extended task operation:

mathematical equations currently have limited use

when talking about a days’ worth of activities, as do

low-level productions and memory processes. We do,

however, believe that there is promising work to be

done here to ameliorate these weaknesses. For example,

one could apply a Kalman filter to an ACT-R/E model

to prune and update its state space from observations

of what a human partner is doing, allowing it to better

operate over longer periods of time.

Figure 2 shows the approaches separated by how

much data is required to train them, as well as whether
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Figure 2. Plot of different approaches considering the
amount of data required to train a model in a new domain,
as well as whether a model’s structure must be
hand-specified or can be automatically learned.

the model structure can be learned or must be hand-

specified. Again, we see the computational/algorithm

borderline level stand out from the other two levels,

and, again, this difference is an intuitive one. Research

on models at that level has started focusing more, in

general, on automatically learning models’ structure;

that, in turn, requires more data than learning the

parameters of an existing model. As before, it also

suggests a possible line of research for algorithmic

models, where, if provided more data, they could also

automatically learn their models’ structure within the

existing architecture.

Combining Approaches Across Levels

The above figures also suggest that the approaches

at the different levels have complimentary strengths

and weaknesses. This then raises the question of how

approaches can be combined to take advantage of each

of their strengths while minimizing their weaknesses.

For example, we earlier discussed how one approach

recognizes human actions by using HMMs or BNs,

and then uses a grammar-based model to parse the

sequence of actions and understand the structure

of behavior. This work combines approaches that
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target different timescales, increasing the scope of the

combined model’s power; we also believe that there can

be an event greater benefit in combining approaches

that target different Marr’s levels.

For example, one could have an HMM where each

latent state corresponds to a different model in ACT-

R/E. Such a composite model would allow the robot

to, in part, use its knowledge of how a person completes

a task, given noisy human processing, to help it infer

what task the person is completing. In other words,

such a model would give the robot the combined power

of both the computational and algorithmic levels. This

combination of different levels of modeling is the best

way, we believe, to model human-robot collaboration

tasks: using both information about what the person

is doing as well as how they are doing it.
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